
Lua for All Teachers
John Hanna

T3 International Conference
March 8-10, 2013

Philadelphia, PA USA

John Hanna & friends
www.johnhanna.us
jehanna@optonline.net

“The main difference between TI-BASIC programming and Lua programming is the way the user interaction is
turned inside out. BASIC programs are in control: they read input from users and display results whenever their
logic dictates. Lua scripts, on the other hand, are reactive. They may only accept input in response to events
such as key presses. And they only display results indirectly in response to the system requesting a repaint. It
takes a new way of thinking to write programs in this fashion.”

-John Powers 1/14/13

Background
‘Lua’ means ‘moon’ in Portuguese and the name derives from the language’s ancestry. It was developed at the Pontifical
Catholic University of Rio de Janeiro in Brazil. Lua is an embedded language that uses an interpreter in the host operating
system (in our case, the TI-Nspire OS). It is robust, fast, portable, embeddable, powerful, simple, small, and, best of all, free.

Writing a Lua program in TI-Nspire results in the creation of a custom application (app). This app can be controlled like any
built-in app: it can be copied & pasted to other TI-Nspire documents, it can be split-screened and it can communicate with
other apps via TI-Nspire variables. But the Lua program has to account for mouse actions and keystrokes in order to provide
for interaction.

Use the Script Editor in the computer software (see Insert menus) to write your Lua programs. Lua apps are not created on
the handheld although there are two special TI-Nspire documents that let you write and edit Lua programs (oclua.tns and
TIDE.tns) for teaching purposes. And a special concern is that, when developing a Lua app, we have to plan for its behavior
in the software, handheld and online Document Player.

Your first Lua app (Lua is caseSensitive):

Notes:
on.paint is the event that’s responsible for
displaying stuff.
gc = “graphics context”, the canvas

drawString to draw a string. There are other
things to draw!

100, 100 are ‘screen coordinates’. 0, 0 is the upper
left corner of the screen.

Click the ‘Set Script’ button on the toolbar to run the program. Use ‘Focus Script’ to bring the app to the
foreground. If there’s a syntax error in your program, the error message will appear at the bottom of the
Editor in the ‘Console’. If you use print() statements their output will also appear in the console.

Lua for All Teachers
John Hanna

T3 International Conference
March 8-10, 2013

Philadelphia, PA USA

John Hanna & friends
www.johnhanna.us
jehanna@optonline.net

Necessary resources:
www.lua.org – the home site of Lua
http://www.lua.org/manual/5.2/ - the official Lua reference manual. Bookmark it.
http://education.ti.com/en/us/product-resources/nspire-scripting - the documentation for the TI-Nspire
extensions to Lua. You will need the Lua Scripting API Reference Guide. Download the pdf and open it.

After reading all the documentation you will discover some useful functions:
 platform.window:width()
 platform.window:height()

… determine the width and height of the application (window) in which you are working.

So, to improve the program (not very efficient, though):

function on.paint(gc)
 W = platform.window:width() -- width of screen

 H = platform.window:height() -- height of screen

 str = "Hello, World!" -- the string to draw

 sw = gc:getStringWidth(str) -- string width

 sh = gc:getStringHeight(str) -- string height

 gc:setColorRGB(128, 128, 128) -- sets the paint color

 gc:drawString(str, (W-sw)/2,(H-sh)/2) -- do the math!
end

Images
The Script Editor is used to convert picture files into strings that Lua uses to represent the image.
Insert Image pastes a quoted string into the Editor at the current cursor position:
At the top of your code:

img = image.new(cursor_here_when_inserting_an_image)
 i = image.copy(img, 50, 100) -- make a copy that will fit

Then, in on.paint(gc)use:
 gc:drawImage(i, 0, 0) -- draw the copy

Other Graphics
gc:drawRect(x1, y1, w, h)
gc:fillRect(x1, y1, w, h)
gc:drawArc(cx, cy, r1, r2, a1, a2)

etc… see the TI-Nspire documentation

Lua for All Teachers
John Hanna

T3 International Conference
March 8-10, 2013

Philadelphia, PA USA

John Hanna & friends
www.johnhanna.us
jehanna@optonline.net

Events (on.things)
The Lua app responds to ‘events’ and the events are part of the on. module.

function init() -- my own function
 x=0
end

function on.construction() -- when the app is constructed
 init()
end

function on.paint(gc) -- when the app needs to be repainted
 W=platform.window:width()
 H=platform.window:height()
 str="Hello, eWorld!"
 sw=gc:getStringWidth(str)
 sh= gc:getStringHeight(str)
 gc:drawString(str, (W-sw)/2,(H-sh)/2)
 gc:drawString(x,10,50)
end

function on.mouseMove() -- when the mouse is moved
 x=x+1
end

function on.mouseDown() -- when the left mouse button is pressed
 init()
end

Classes
Classes provide a means of encapsulating objects with data and member functions similar to Java
programming. Here’s a complete Lua example:

circle=class() -- the name of the class is circle

function circle:init(cx, cy, radius) -- called when a circle
 -- object is created
 self.x = cx
 self.y = cy
 self.r = radius
end

function circle:paint(gc) -- the routine to draw the circle
 gc:drawArc(self.x, self.y, self.r, self.r, 0, 360)
end

c = circle(50, 50, 50) -- c is now the circle object

function on.paint(gc)
 c:paint(gc)
end

Lua for All Teachers
John Hanna

T3 International Conference
March 8-10, 2013

Philadelphia, PA USA

John Hanna & friends
www.johnhanna.us
jehanna@optonline.net

Tables
Tables are used extensively in Lua for organizing data. Similar to TI-Nspire lists but much more
powerful. The for loop is used to access the elements of a table:

x=65
myTable={3, 4, "John", x}

function on.paint(gc)
 for i = 1, #tabl do
 gc:drawString(myTable[i], 50, 20*i+20)
 end
end

Tables can be built ‘on the fly’ using:
 table.insert(myTable,"thing")

For object-oriented programming, a table can contain different objects.

Communicating with other apps
var.monitor, var.store, var.recall and on.varChange are used to pass values between the Lua
app and the other apps in the problem.
Demo: make a Graphs or Geometry app and create a slider. Call the variable v. Create a Lua app and
make the code:

function on.construction()
 var.monitor("v") -- listen to the TI-Nspire variable v
 xpos = 0
end

function on.paint(gc)
 gc:drawArc(xpos, 100, 20, 20, 0, 360) -- draw a circle
end

function on.varChange() -- when v changes
 xpos = var.recall("v") -- copy its value into the Lua app
end

You can combine the two apps onto one page by pressing ctrl-4 on the first page.

Other resources:
 Steve Arnold’s Most Excellent Lua Tutorials:
 http://compasstech.com.au/TNS_Authoring/Scripting/index.html

An online Lua for TI-Nspire editor and emulator:
 http://compasstech.com.au/TNS_Authoring/Scripting/luajs/editor.html

… works on tablets (including iPad) as well as computers. Write and test code here.

