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Introduction 
 

Humans are ruled by two forces: Hold on and Let go. These two forces corres-
pond to Yin and Yang, the two elementary polar energies that are considered and 
studied in Eastern philosophies. In the context of teaching and learning mathema-
tics and related subjects these two energies manifest as Connect and Automate. 
Connecting is an active, seeking form of holding on. Automating means to let a 
tool do what we used to do ourselves (such as performing arithmetic operations), 
i.e. we let go these tasks. 

 

Hold on - Yin - Connect 

Let go - Yang - Automate 

 

☯ 
A car is a tool for automating transportation. Instead of walking to the grocery 
shop, we can go there by car. This saves us from having to walk between our 
home and the shop and from having to carry the groceries. For some people, using 
a car for their shopping is a convenience that saves 
time and energy that they can then use for other acti-
vities – such as reading a book. For people who are 
physically challenged, using a car for their daily 
shopping may be a matter of survival.= 

This example shows two motivations for automation: Amplification and compen-
sation. Here is another example: Optical instruments such as tele-
scopes and microscopes amplify our natural eye sight so that we can 
see things that we cannot see otherwise. Optical in-
struments such as eye-glasses compensate poor eye-
sight so that people with poor eyesight can see things 
that people with normal eyesight can see without 
glasses.  

This can be further refined. Amplification in itself has two aspects based on the 
motivation to amplify. One can use a telescope to look at a distant object as may a 
private detective or a policeman do when observing a suspect – or as may an 
astronomer do when observing a moon eclipse. Alternatively one can use a tele-
scope to scan the sky in the search for new stars. These two uses may be named 
solving and exploring. Likewise with the car example: Using a car for shopping or 
for visiting a friend who lives in another city solves a transportation problem. 
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Driving a car around California on a holiday trip is a nice way to explore the most 
populous U.S. state. 

This gives three automation archetypes based on the motivation to automate: 

Automate = Compensate + Amplify  
                               = Compensate + Solve + Explore 

Here is a visualization of the Automate triangle1: 

 

Connection also comprises three archetypes based on what to connect with what, 
notably representation, documentation, and communication. Representation is 
about connecting models with models, such as connecting an algebraic model (an 
expression) with a graphic model (a graph) or a numeric model (a table). Docu-
mentation is about connecting models with humans, such as writing a paper on 
how a problem was solved. Communication is about connecting humans with 
humans, such as having students work in pairs or groups. 

Connect = Represent + Document + Communicate 

Here is a visualization of the Connect triangle2: 

 
                                               
1 The Yang triangle usually points upwards. 
2 The Yin triangle usually points downwards. 
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Putting these two triangles next to each other yields a picture that I call the Yin & 
Yang of Teaching and Learning Mathematics:  

 

 

 

This picture shows six archetypes that we encounter in the context of teaching and 
learning mathematics (and related subjects). The benefit of this model is to allow 
for a better understanding of how to best integrate technology into mathematics 
education. 

Before we go through each of the six archetypes and discuss the various roles that 
technology, in particular computer algebra systems (CAS), can play for each we 
present an additional picture that is helpful for understanding the benefit of using 
technology for both mathematics and mathematics education. 

☯ 
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Mathematics/Pedagogy/Technology-Space 
 

Let the x-axis of a three dimensional system of orthogonal coordinate axes re-
present mathematics, the y-axis represent pedagogy, and the z-axis represent 
technology. 

 

In this model, mathematicians are people who work “on the mathematics axis”, 
i.e. in linear 1D “space”. 

Mathematics teachers are people who work “in the mathematics/pedagogy plane”, 
i.e. in planar 2D “space”. A mathematics teacher has to know mathematics and 
the pedagogy of how to teach a person some mathematics.  

Say, a person has a mental capacity of 100 “units”. As a mathematician, this per-
son can use this capacity for a “professional span” of a length of 100 units on the 
mathematics axis. As a mathematics teacher, this person can use the same capaci-
ty for a “professional span” of an area of 100 units in the mathematics/pedagogy 
plane, which corresponds to, for example, a rectangle measuring 20 units along 
the mathematics axis and 5 units along the pedagogy axis. 

☯ 
Traditionally mathematicians used simple technology such as paper and pencil to 
amplify their brain power for performing mathematical tasks. Calculation tools 
such as abaci (abacuses) are in use for many thousand years already, the Sumerian 
abacus dates back to 2700-2300 BC. Abaci facilitate the performing of arithmetic 
operations. The basic operation on an abacus is to add or subtract one. Basically, 
today’s computers are very much advanced abaci with sophisticated electronic 
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mechanisms built on top of the basic operations3 in order to perform increasingly 
complex tasks that today include graphing, dynamic geometry, computer algebra, 
and theorem proving.   

Computers have greatly changed the world in general – and the world of mathe-
matics in particular. One of the first significant uses of a computer for mathema-
tical research was the proof of the Four Colour Theorem4. Some mathematicians 
still don’t accept the proof arguing that a human cannot verify it in practice5. 
However, computing the number Pi to millions of digits or finding very large 
prime numbers also requires a computer and a human verification is far beyond 
being practical or realistic. Should we not accept these results and should we not 
use very large prime numbers in bank or internet security systems just because a 
human cannot verify it?6 

More and more mathematicians accept computer software, in particular powerful 
numeric, graphic, and algebraic software environments, as tools for mathematical 
research. These mathematicians move from the 1D mathematics axis into the 2D 
mathematics/technology plane. A “visual argument” for the benefit of this is that 
one has infinitely many more ways of connecting two points on the mathematics 
axis by allowing paths in the mathematics/technology plane. The higher that we 
can go on the technology axis, the more paths are possible, enabling solutions and 
findings that are not possible without (or with less powerful) technology.  

 

                                               
3 The basic language of a computer is the language of binary numbers, i.e. sequences of zeros 
and ones, which somehow resemble patterns of pebbles of an abacus. Basic operations on 
binary numbers compare to shifting pebbles of an abacus. 
4 The Four Colour Theorem states that any plane separated into regions can be coloured using 
no more than four colours such that no two adjacent regions have the same colour. (Two re-
gions are adjacent iff they have a segment as a border.) Political maps are typical examples. 
5 It goes without saying that a human could verify the proof in theory by just executing the 
computer program step by step, using a lot of paper and a lot of pencils. But probably it would 
take several human life times to perform the proof manually.  
6 Such a traditionalist view can be a stumbling block for further progress in any area. When 
automobiles started to be used, some people were afraid of using them, saying that moving at 
a speed faster than walking would be dangerous. Where would we be without technology? 
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Technology makes some mathematics possible. 
(Bert Waits) 

☯ 
The same argument holds for accepting computer tools for teaching and learning 
mathematics. Mathematics teachers using technology move from the 2D mathe-
matics/pedagogy plane into the 3D mathematics/pedagogy/technology space, 
which means infinitely many more possibilities of connecting two points in the 
mathematics/pedagogy plane by permitting 3D paths. This is like allowing heli-
copter trips in a landscape that previously could be explored only using “surface-
attached” tools such as bikes, cars, or ships. 

 

Gifted students may be able to have their brilliant minds fly from A to B – but 
what about the other students? A ride on the “mathematical helicopter” may be 
what they need for the trip! 

I had a very touching experience once with a group of students. As part of a 
teacher training course I taught a group of students while the teachers observed 
the lesson. We used the (legendary) TI-92 handheld and I let the students do some 
work in analytic geometry. I asked the students a quite demanding question and 
told them what kind of experiments they should do on their handhelds in order to 
find the answer. I walked through the classroom to see how well the students did 
and after a while I saw the first students succeed. Suddenly a girl shouted: “Yes!” 
I encouraged her to share her findings – and she gave a perfect answer. After the 
end of the lesson her teacher told me that she was his “weakest” mathematics 
student. But in my class she was as fast and as successful as the best of her 
classmates. For her the use of technology made a big difference!  

Technology makes some mathematics pedagogy possible. 
(Bert Waits, extended) 

Not the tool, but the use of the tool is or is not pedagogical. 
(Vlasta Kokol-Voljc) 

In the following chapters we will look at the pedagogical motivations for doing 
mathematical helicopter rides. 

☯ 
The three axes model also lets us better understand how to best do technology 
training for teachers. Novice teachers have to learn how to fly the mathematical 
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helicopter, they have to learn how to use the helicopter to transport loads and 
passengers, and they have to learn how to instruct students to do certain helicopter 
manoeuvres. (In fact, most students learn very quickly how to fly the mathema-
tical helicopter.) 

It is a frequently observed mistake to do technology teacher training with “interes-
ting” or even “challenging” mathematics – or to try to “sell” new pedagogical 
ideas in an introductory technology training course. This is like introducing 
students to the technique of differentiation by doing a challenging optimization 
problem – just to also show them how useful differentiation is. Gifted students 
may be able to digest such a “heavy mathematical meal”, but the majority of 
students will suffer from “mathematical indigestion”. Likewise with teachers: 
technology lovers may be able to handle a steep learning curve with learning 
technology and new mathematical and pedagogical opportunities at the same time, 
but the majority of teachers will need a gentle ride first along the technology axis, 
then into the mathematics/technology plane, and only finally into mathematics/ 
pedagogy/technology space. Teacher training should be done gradually and with 
as much (pedagogical) care as any kind of teaching. 

☯ 
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Represent 
 

Consider the following problem: A homogeneous7 cube hangs by a thread 
attached to one corner. It is otherwise free to move. When we look at this configu-
ration from the front (as in the following picture), then we see the cube as three 
parallelograms.  

                      

What is the smallest angle (greater than zero) through which we must spin the 
cube so that we see the same figure? 

 

Trivially we get the same figure after rotating the cube a full 360 degree, but does 
it happen earlier?  

                                               
7 If the cube is not homogeneous, its centroid may not lie in the intersection of the three spatial 
diagonals. However, this is what we want to assume here. 
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We vary the representation of this problem in that we use a new point of view. We 
look from above, where the thread attaches. Then we see the following figure. 
(The previous eye position is also shown.)  

 

From this point of view the answer to the posed question is obvious. For a rotation 
of 120 degree, 240 degree, and 360 degree the figure remains the same, so 120 
degree is the solution to the problem. 

The problem appeared demanding when looking at the first picture. The solution 
is obvious when looking at the above picture.  

If you have a problem, there are two paths open to you:  
either you solve the problem, or you change your view. 

(Chinese Proverb) 

Through changing the view in the above example, the solution became obvious. 
Changing the view means changing the representation. 

☯ 
Representations play a central role in mathematics. Various representations are 
like various points of view. A city appears completely different when viewed 
from above, perhaps from the basket of a hot-air balloon, to how it does when 
viewed from a neighbouring hill, and different again when viewed by someone 
taking a walk around the city itself. 

 

If a question about an object is posed, one should take a point of view that makes 
it as simple as possible to find the answer. To find the quickest way from the 
council house to the city gasworks one uses the hot-air balloon point of view (that 
we obtain in the form of a city map). The question as to the tallest building in the 
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city is easily answered from the neighbouring hill, while the colour of the main 
door of the church is most easily answered from within the city itself. 

One of the basic techniques of mathematical problem solving is to find a represen-
tation of a problem that makes the problem easy to solve, if not actually making 
the solution obvious. Therefore one can look at mathematical problem solving as 
the art of transforming representations until the solution is visible. The problem 
with the hanging cube is a fine example. Another example is the solving of an 
equation such as 5x-6 = 2x+15 by transforming it into the equivalent equation x = 
7. Both equations define the number 7, hence both equations can be considered a 
representation of 7. The first equation, 5x-6 = 2x+15, is an implicit representation 
of 7. The second equation, x = 7, is an explicit representation of 7. 

In chemistry we use the method of distillation to obtain 
the essence of, for example, a plant. If we carefully distil 
peppermint leaves, we obtain the essential oil of pepper-
mint. Solving an equation is a similar process. The 
method of solving an equation by applying equivalence 
transformations can be seen as a distillation process for 
obtaining the equation’s essence, which in mathematics 
is called the equation’s solution.  

 

☯ 
There are many kinds of changing a representation. One can change the represen-
tation type, such as going from algebraic to numeric or graphic. One can change 
the “point of view” within a representation type, such as going from an expanded 
form to a factored form, from a table with starting value 0 and increment 0.1 to a 
table with starting value 1 and increment 0.5, or from a graph with a certain plot 
range to a graph with a different plot range.  

What we consider a calculation (or a simplification), such as rewriting ‘1+2’ as 
‘3’ or rewriting ‘3a+4a’ as ‘7a’, also can be seen as a change of representation. 
Both ‘1+2’ and ‘3’ represent the same thing and so do ‘3a+4a’ and ‘7a’. 

Rewriting 24  as 2 6⋅  is a change of representation. Approximating 24  to the 
decimal fraction 4.89898 is a change of representation. But there is a difference 
with the latter: while one can go “back” from 2 6⋅  to 24 , because these two 
representations are equivalent, one cannot go back from 4.89898 to 24 , because 
information got “lost” when going from 24  (which, written as a decimal frac-
tion, has an infinite number of digits after the decimal point) to 4.89898. Never-
theless there are situations when an approximation is more useful than the precise 
original expression, such as when answering questions involving order. 
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Loosing information when approximating 24  by a decimal number has an inter-
esting aspect: On a scientific calculator, 4.89898 is the only way of “representing” 
the square root of 24. Most calculators can represent simple rational numbers such 
as one third only as decimal fraction approximations with a certain number of 
digits (such as 0.33333333). Scientific calculators are materializations of number 
sets R(n), where R(n) denotes the set of decimal fractions with n digits. R(n) is a 
true subset of the set of rational numbers � . These number sets R(n) are not 
closed with respect to multiplication or division, hence simple identities such as 
1

1x
x

⋅ =  or 2 2 ( ) ( )x y x y x y− = + ⋅ −  may not be valid.8 

The following picture shows various representations of the algebraic expression 
2 2x − .  

 

Double headed arrows indicate equivalence, i.e. full preservation of information, 
so that one can move in both directions. Single headed arrows indicate loss of 
information, so that one can move only in one direction. 

                                               
8 (1/x)·x = 1 is not valid in any R(n), although most calculators hide this in obvious cases, for 
example by rounding 0.999999999 to 1.  

For x²-y² = (x+1)·(x-1) look at R(1) and choose x=1.1 and y=0.2.  
The left hand side gives 1.1²-0.2² = 1.2(1) – 0.0(4) = 1.2.  
The right hand side gives (1.1+0.2)·(1.1-0.2) = 1.3·0.9 = 1.1(7) = 1.1. 
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( 2) ( 2)x x+ ⋅ −  is the factored equivalent of 2 2x −  and one can “go back” by 
expanding the expression. ( 1.41421) ( 1.41421)x x+ ⋅ −  is a decimal approximation of 

( 2) ( 2)x x+ ⋅ − , so these two expressions are not equivalent. The upper table in 
the above picture is a function table for 2 2x −  with starting value 0, increment 1, 
and end value 7. The lower table is a function table for 2 2x −  with starting value -
1, increment 0.5, and end value 2.5. Such tables are a significant reduction of 
information. One cannot go back from such a table to the original algebraic 
expression. Also, the lower table cannot be obtained from the upper table; in order 
to produce it one has to start over with the algebraic expression 2 2x − . Graphs are 
geometric equivalents of function tables obtained via the Cartesian coordinate 
concept. The lowest graph is an equivalent of the lower function table. It is a 
discrete scatter plot showing the eight points whose coordinates are in the table. 
The upper two graphs are continuous function plots. In fact, they appear conti-
nuous, very much like a movie appears continuous because our eye cannot make 
out the many discrete pictures it comprises of. A function plot is obtained by 
evaluating the function at very many values of x, often only a pixel size apart 
from each other, and connecting neighbouring graph points. Therefore, their 
function table equivalent would be very long tables with very small increments. 

☯ 
One of the core skills of a mathematician is to simultane-
ously hold different representations of a (mathematical) 
object in his or her mind and to choose the one that is 
most useful in a given context. 

Mathematics teachers strive to help their students develop 
this skill. While one cannot have the students “look into a 
mathematician’s brain”, one can employ technology to 
simulate a mathematician’s mind. Seeing several repre-
sentations of an object on the screen right next to each 
other and seeing how all other 

representations change when one representation is 
modified is an extremely powerful pedagogical 
approach that is possible only with computer techno-
logy.  

Therefore a good mathematics teaching and learning 
tool should offer an easy way of changing representa-
tions, i.e. to switch between models (algebraic, gra-
phic, numeric) and to have all these representations be 
linked dynamically. 
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The following picture shows a TI-Nspire9 screen with the function expression 
21( )f x x= , a corresponding function graph, and a corresponding function table.  

 

One can edit the function expression, and then observe how both the function 
graph and the function table are updated automatically.  

    

One can grab the function graph, drag it, and then observe how both the function 
expression and the function table are updated automatically.  

    
                                               
9 TI-Nspire is a powerful mathematics tool produced by Texas Instruments. It comprises 
graphing, interactive geometry, a spreadsheet, interactive statistics, a text editor, a program 
editor, and a data collection application. TI-Nspire CAS also includes computer algebra. 
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☯ 
Typically, mathematical problem solving is about solving real world problems10 
with mathematical methods. Characteristic for mathematical problem solving are 
the three steps shown below.  

 
The first step is choosing the model and translating the real world problem P into 
the language of the model, yielding the model problem PM. This is the entrance 
into the world of mathematical representations. And this is where the mathemati-
cal “alchemy” starts with its art of transforming representations until the 
problem’s essence – its solution – is found.  

Going from a real world representation11 to a mathematical representation requires 
to grasp and understand12 the situation, it requires to know a large enough “tool-
box” of mathematical representation types, also called “mathematical models”, 
and it requires to be able to choose an appropriate representation/model from this 
toolbox.  

An optimization problem, for example, may translate into a function to be opti-
mized and equations that describe constraints between the variables. 

The second step is applying the available algorithms to solve the model problem 
PM (= to transform the mathematical representations), yielding a model solution 
SM. 

The third step, finally, is to translate the model solution SM into a real world 
solution S. 

However, now we still need to test, if S actually is a solution of P. If it is not, then 
the whole process needs to be repeated, because the mistake or error could be any-

                                               
10 Most problems used in the classroom are “idealized” real world problems that may better be 
named “quasi real world problems” or “near real world problems”.  
11 This might be a real world situation that one observes or a natural language description of a 
real world situation. 
12 See the chapter Document for more on understanding. 
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where: The chosen model may be inappropriate, the translation may be faulty, or 
there may be an error in the calculation. 

Traditionally, problem solving is treated at school only half-heartedly. Main 
emphasis is on the second step, calculation, and its execution with paper and 
pencil. Typically one can do, may be, three optimization problems in an one hour 
lesson using up to 80 % of the time for (hand) calculations. Only about 20 % of 
the time may remain for mathematical modeling. Hence, most problem solving 
exercises turn into exercises for practicing the required calculation skills. And this 
we call “problem solving training”?!  

Choosing models and translating from the real world into mathematics and vice 
versa rarely are taught explicitly. Therefore it is understandable that a majority of 
students don’t develop this ability. Hence, they are afraid of exercises requiring 
such translations. With the (extensive) use of powerful technology such as CAS 
for the calculation step13, one can dedicate a lot more time to teaching the choice 
of models and how to translate real world problems into the language of mathe-
matics. One may be able to treat ten or more optimization problems in an one 
hour lesson spending 80 % of the time on modeling and only 20 % on calcula-
tions. This would be the proper “problem solving training”, an important part of 
which is learning to find a mathematical representation of whatever has to be 
solved. 

By employing technology as widely as possible, we can dedicate enough time to 
teach the choosing of mathematical models and the translating into the language 
of these models. Once these skills are taught explicitly, more students will appre-
ciate and master them. 

☯ 

                                               
13 See the chapter Solve for more on calculating. 
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Document 
 

The word document derives from the Latin word docere = teach. Therefore, a 
document is a paper (more generally: an object) that teaches something or, in 
other words, that proves something. 

When you solved a (mathematical) problem and you want to prove – to whomever 
– that you did, you have to document your solution and, eventually, the method 
that you used to find the solution. If you are a student, you may have to prove to 
your teacher. If you are an employee of a company, you may have to prove to 
your boss. If you are a freelancer, you may have to prove to your customer. If you 
are a scientist, you may have to prove to the academic world. Even if none of the 
above applies, you may want to prove to yourself at a later point in time, i.e. after 
you may have forgotten the thought process that you just went through. 

By its very nature, documenting requires the 
ability to argue, i.e. to convince somebody with 
a certain level of knowledge (that level of know-
ledge should be lower than the knowledge that 
you have right after solving the problem). The 
ability to argue, in turn, requires the ability to 
design the content of the document (for which 
creativity is needed) and the ability to describe 
the content using natural language and pictures 
(with graphs, tables, sketches, …), i.e. to convey 

a message with an intended meaning in an unambiguous manner. 

☯ 
Describing is the inverse of understanding, which is the skill to interpret a given 
natural language text or document. Describing and understanding are very closely 
related and depend on each other. Therefore these skills should be developed and 
trained together. Because a text can have multiple meanings or even be contradic-
tory, comprehension requires the ability to recognise plurality of meaning or 
contradiction and, where necessary, to look into each possible interpretation. A 
good example is the sentence “I saw the man on the hill with the telescope”, 
which has several possible interpretations with variations of who is on the hill and 
who has the telescope. 

As simple as it usually is to understand a short sentence, a longer sentence or text 
can be almost incomprehensible, for example the instructions for a video recorder, 
an insurance policy, a law statute – or a word problem in a mathematics book.  
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While we are on the subject: as already discussed at the end of the previous chap-
ter, word problems can and should be used for practising and training the under-
standing skill, the modeling skill, and the translating skill (they are all part of the 
problem solving skill). Word problems should not be misused for practising the 
calculation skills that are required to compute the solution. 

A valuable and quite useful practice is the understanding of expert opinions. What 
does it mean when an expert says, “There is no proof of 
environmental damage caused by this installation”? It 
does not mean that it is clean (even if the manager of the 
facility wants to interpret it this way). Neither does it 
mean that the installation is dangerous (even if the 
protesters want to interpret it that way). For this type of 
exercise every daily newspaper is full of examples 
waiting to be used for practicing both understanding and 
describing. After a text has been understood, a new 
formulation can be sought that is shorter, clearer, less 
ambiguous, … 

To begin with, newspaper articles can make a fine source for improving students’ 
skills of understanding and describing. For a more formal approach one can deal 
with simple mathematical logic, where students translate between everyday lan-
guage and the language of mathematics. Following are a few examples. Going 
from left to right practices understanding. Going from right to left practices 
describing. 

 27 is divisible by 3 �� (27 3)t t∃ = ⋅  

 Every number is greater than its predecessor �� ( 1)x x x∀ > −  

 The square of a number is non-negative �� 2( 0)x x∀ ≥  

 There is a number with its square equal to 4 �� 2( 4)y y∃ =  

☯ 
Argumentation is about finding convincing reasons for something. In order that 
they are convincing, they must, among other things, be consistent with the state of 
knowledge of the listener/reader. For instance, the arguments about the necessity 
of a certain medical therapy are different if the doctor is talking to a medical 
colleague rather than to the distressed, uneducated father of a child. 

Argumentation is the first step towards the very important mathematical skill of 
constructing proofs. Exercises of the following kind serve to train this skill: 

• Explain why one uses the first derivative to find the extreme values of a 
function. 
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• If a curve is symmetric in both the x- and y-axes, is it then symmetric 
through the origin? Give the reason or find a counter-example. 

The important understanding that even a thousand examples are not proof of a 
statement, while one counterexample is enough to disprove it, could be developed 
through various case studies. 

Furthermore the danger of accepting an argument too quickly should be demon-
strated. The following example is very illustrative and, for educational purposes 
quite useful. 

A square has side length 1. Thus the sum of the lengths of the upper and right 
hand sides is 2. Making a single step, as shown below in the second picture 
from the left, does not change the total length; the resulting step thus has also 
length 2. Cutting further steps as shown in the third and further pictures below 
does not change the total length, so we see that all such steps have length 2. If 
we proceed, then the limiting case is the diagonal, which must, therefore, have 
length 2. Since we already know that the diagonal has length 2 , we deduce 
that 2 2= . 

 

Recreational mathematics books are full of such examples. We need only the 
courage to introduce them to normal teaching situations. School mathematics 
would, especially in the eyes of many of the students, lose much of its dryness. 

☯ 
Documenting is an important part of mathematics education. It gains importance 
in traditional mathematics classroom activities, namely within the productive 
phase of applying mathematical knowledge to solve problems.  

In traditional assessments, the solution to the problem is 
often the only goal, and the craftsmanship of performing 
the calculations that are required to obtain a solution 
earned a student a good mark. This changes with techno-
logy, in particular powerful technology such as CAS, 
because finding a solution of an equation or finding an 
integral is a different kind of work when all you need is to 
press the appropriate keys or do the appropriate mouse 
clicks. It still is mathematical work because one can un-
doubtedly argue that choosing the appropriate sequence of 

commands or keys from a more or less large selection of keys and commands 
does require mathematical know how. However, this kind of mathematical work 
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requires much less time than performing the underlying calculations with paper 
and pencil. 

The result loses importance because it is easy to obtain. A documentation of how 
the problem was solved is much more than just a good replacement: documenta-
tion of experimenting or problem solving provides valuable feedback in the 
teaching process, both during the concept development phase and for the 
assessment. 

For assessment, documentation of mathematical experiments or mathematical 
problem solving is comparable to a composition written for an English class. The 
documentation of mathematical work is not just right or wrong. It can be too 
short, too long, incomplete, or it can deviate from the subject, etc. 

☯ 
Technology has two roles for the document archetype: 

(1) The presence of technology means a shift of focus from executing algorithms 
to documenting mathematical work, i.e. it strengthens the role of documentation 
in the classroom.  

(2) Technology can support the production of documents. A good mathematics 
teaching and learning tool should offer an easy way to create documents, using 
text and appropriate images of the changing representations used to solve a 
problem. 

☯ 
The following screen image shows a document that was produced with TI-Nspire 
CAS. 
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Communicate 
 

Communication is the most natural mental activity of a human. The word commu-
nicate derives from Latin com = together and *moinicos = carrying an obligation 
(from munia = duty, obligation) and means the imparting or transmitting of ideas, 
knowledge, information, etc. It is related to the word community, hence reflects a 
central aspect of the human as a social being. 

The means of communication is language. Humans communicate with each other 
using natural languages such as English as well as body languages. In our context 
we only look at the spoken or written language. 

Mathematics also is a language. 

The book of nature is written in the language of mathematics. 
(Galileo Galilei) 

While natural languages connect humans with humans, mathematics connects 
humans with nature. 

Many contemporary mathematicians consider mathematics the science of pat-
terns. We look at phenomena around us and observe patterns. An example is the 
fact that an object that is released moves towards the centre of the earth until the 
movement is stopped by an obstacle such as a table or a floor. This pattern was 
named the law of gravity. Nature communicates with us via such patterns. Mathe-
matics can be seen as the “interface” between the physical world of nature and the 
non-physical world of the human mind.  
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The word mathematics derives from the Greek word mathema = learning, 
knowledge from manthanein = to learn. Therefore, mathematics originally 
meant all systematic collections of knowledge, i.e. all kinds of sciences (from 
Latin scientia = knowledge). 

Using the notions of information technology, there are two kinds of knowledge 
connected with nature: (1) the programming language in which nature is “written” 
and (2) the program code of nature.  

By trying to “reverse engineer” nature we aim at learning about both the program 
code and the programming language. While originally all this was seen as mathe-
matics, nowadays we use mathematics only for the abstract form of knowledge 
(the “programming language” of nature) and the study of the “material” form 
of knowledge (the “hard-wired program code” of nature) is studied as the 
natural sciences. Natural sciences were further split into disciplines such as 
physics, chemistry, biology, etc. 

☯ 
In the context of the six archetypes we use communication in the narrow sense as 
a connection between humans. 

In fact, documentation can be considered an “offline” form of communication 
with a possibly anonymous and typically remote communication partner. There-
fore, the skills discussed in the previous chapter, i.e. understanding, describing, 
and arguing are relevant also here. 

In addition there are some important issues regarding the “online” aspects of the 
communication between student and teacher as well as the (learning related) 
communication among students. 

First we look at the communication between student and teacher. Traditionally, 
teachers almost exclusively use the method of front teaching, where the teacher is 
active and the students passive. The opposite of this 
would be a classroom setting in which the students 
work either freely exploring or under the guidance 
of the teacher, while the teacher acts as an advisor 
and assistant in case of trouble, as is typical when 
students use technology. Such teaching situations 
where the students are active and the teacher (prin-
cipally) passive, especially encourage the indepen-
dent activity and the creativity of the students. The 
ideal teaching methodology lies in a good mixture 
of these two forms.  

☯ 
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Next we look at the communication between students. Traditionally students 
almost exclusively work alone, as is most typically enforced in an exam. How-
ever, later in life they may need to work in teams, so teamwork should be en-
couraged and practiced in school already. The use of technology is a good 
opportunity to have students make explorations or solve problems in teams.   

A team is a group comprising at least two people. 
An argument that is often used against teamwork 
is that the work in a team often is done by only one 
or a few gifted students, while less gifted students 
remain passive. To prevent this, the teacher could 
form teams with only equally gifted students. 
Another, maybe more useful approach is to equally 
distribute all abilities within the groups. If the 
presentation of the teamwork has to be done by a 
randomly chosen team member, the more gifted 
students will help those less gifted – in particular if 
the result of the teamwork counts as a performance for all team members. Such 
peer teaching is advantageous to all students: the less gifted students receive 
support, while the more gifted students learn further through their teaching. Team-
work also helps improving communication skills (and not only regarding 
mathematics).  

☯ 
Generally, the use of technology often is a trigger for group work as well as for 
oral mathematics, i.e. the communication about mathematics.  

A good mathematics teaching and learning tool should support students commu-
nicating with each other and with the teacher. Exchanging documents and screen 
content would be desirable for facilitating remote forms of teamwork with team 
members not sitting next to each other.  

☯ 
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Compensate 
 

Say, your students have to solve the equation  

 

Solving such an equation for x is done by transforming it into the form “x = term 
with no x”. This is achieved through choosing and applying an appropriate se-
quence of equivalence transformations. Typically one will “bring terms with x to 
one side of the equation” and “bring all other terms to the other side”. Therefore a 
good first choice is to add 2x to both sides of the equation. 

 

After choosing this equivalence transformation, we have to apply it to both sides 
of the equation i.e. we have to simplify the two expressions x+6+2x and 18-2x+2x. 

 

Now it would be appropriate to subtract 6 from both sides. 

 

We are interested in the practice of teaching and learning mathematics. There is 
no need to care about the students who succeed – because what can we do better 
for them? We should care about the students who don’t succeed. We should strive 
to find out why they make certain errors and how we can help them to avoid these 
errors. 

Back to the equation 3x = 12. At this point some students find it difficult to 
choose a good next step. The following argument is quite typical for many 
students: “There is a 3 in front of the variable x. To get rid of the 3, I must 
subtract 3.”  
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A student, who uses this argument in a paper and pencil environment, most likely 
will proceed as follows: 

 

The student will transform the equation 3x = 12 into x = 9 and believe that the 
equation is solved. It will take the student quite a while to determine that a mis-
take has been made and even longer to find out what was wrong. 

What goes wrong and how can technology help to make it better? An analysis of 
the steps taken above reveals two alternating tasks: (1) the choice of an equiva-
lence transformation and (2) the simplification of algebraic expressions. Here, the 
choice of an equivalence transformation is a higher-level task insofar as it is the 
essence of the strategy for finding the solution of an equation. It is the new skill 
that the student has to learn when learning to solve equations. The simplification 
of expressions is a lower-level task, for which the teacher has to assume that the 
student is sufficiently well trained.   

 

This picture demonstrates that a student, while trying to learn the new skill, repea-
tedly has to interrupt the learning process in order to perform a simplification. 
This is as if one would repeatedly be interrupted during a difficult chess game. In 
fact, it is even worse, because the interruption can influence the „game“: A mis-
take made during the interruption, i.e. while performing the lower-level task, 
severely disturbs the higher-level task and may prevent the student from learning. 
This is exactly what led to the wrong solution x = 9 in the above example: After 
deciding to subtract 3, ideally the student should fully concentrate on subtracting 
3 from both sides of the equation while “forgetting” the motivation for choosing 
this equivalence transformation. But, in reality, the student starts the next line 
with “x =” simply “because the transformation -3 was chosen in order to generate 
‘x =’ on the left hand side”. But then, at the higher level, the student has the 
(wrong) impression that -3 simplified the equation as desired. 

choose equivalence transformation 

simplify 
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This continuous change of levels inevitably occurs in almost all topics in school 
mathematics. It appears to be one of the central problems in mathematics educa-
tion that students have to learn a new ability/skill while still practicing an “old” 
one. 

In the sequel we demonstrate how one can use TI-Nspire CAS to help students in 
this situation.14 

� Enter the equation 6 18 2x x+ = − . 

  

� Add 2x to both sides of the equation by typing:   +2x 

  

Plus is a binary infix operator – and because it was entered without a first argu-
ment, a reference to the last answer, Ans, was introduced. 

� Conclude the input with the Enter key. 

  

The resulting entry-answer pair shows the equation and the unsimplified equiva-
lence transformation on the left and the resulting equation on the right. The next 
step is to subtract 6 from both sides. To do so, type ‘-6’: 

� Start with typing a minus:   EJF 

  

Because there was no first argument, the input is ambiguous. With this selection 
menu TI-Nspire CAS requests to choose the meaning of the minus, as there are 
two types of minus: an infix binary minus, called subtraction, and a unary minus, 
called negation. The first choice in the selection menu is the subtraction minus. 
The text indicates that a reference to the last answer, Ans, will be inserted before 
the minus.  

� Use the Enter key to confirm the highlighted subtract minus or click on it. 

  

� Enter:   6 

  

                                               
14 The original source of this approach is a paper by Aspetsberger/Funk, see References. 
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So far everything is like it was with paper and pencil. Now we mimic a student 
who chooses to subtract 3. See what happens in TI-Nspire CAS if you subtract 3 
from both sides. 

� Enter:   -3 

  

Clearly, the tool applies the equivalence transformation correctly. Therefore the 
student immediately sees that subtracting 3 did not simplify the equation as expec-
ted. Instead, it complicated it. TI-Nspire CAS gave important immediate feedback 
on the quality of the student’s choice. It is like putting the finger on a hot stove 
and feeling the pain immediately. This is a good prerequisite for successful lear-
ning. Students can concentrate on finding suitable equivalence transformations 
without being hindered by a possibly (still) poor simplification skill. The above is 
a practical example of using technology as a compensation tool. 

Undo the last step, and then try dividing by 3: 

� Undo the last step with the Undo button . 

  

You are back in expression input mode. Change the minus operator to a division 
operator: 

� Replace ‘-‘ by ‘/’. 

  

� Conclude the input. 

  

This educational approach is called the scaffolding method. It offers students es-
sential support for building more advanced mathematical knowledge even though 
they might not have mastered some prerequisites. Some of these skills might be 
needed only for technical reasons, being unnecessary for understanding the more 
advanced concept. Thus, technology plays the same role as a scaffolding for buil-
ding a house while some of the lower stories are still incomplete. This metaphor is 
the reason for the name scaffolding method. The idea is based on what Bruno 
Buchberger in the mid 80s suggested as the “Black-Box-White-Box Principle”.15 

                                               
15 See the paper by Buchberger in the References. 
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We look again at the picture with the two tasks that one has to alternatively con-
centrate on when solving equations with paper and pencil. When the computer 
takes over the simplification task, as was done in the above exercise with TI-
Nspire CAS, … 

 

… the students can fully concentrate on the higher level task. 

☯ 
Here is another example. Say, we have used ample time to teach and practice how 
to solve systems of linear equations. At some point in time we do have to move on 
to the next topic, simply because we have to fulfill a 
teaching schedule. At this point some of our students 
will have mastered the solving of systems of linear 
equations while others will have not.  

Say, the next topic is analytic geometry. Many analytic 
geometry problems require the solving of systems of 
linear equations. So what about those students who still 
struggle with systems of linear equations? They will find 
it difficult if not impossible to solve most of the analytic 
geometry problems! 

For a moment we go back to the optical instrument metaphor from the Introduc-
tion: for safety reasons a good eyesight is a prerequisite for being allowed to drive 
a car. What about people with poor eyesight? Should they be banned from the 
road traffic? There is no need to, because they can (and must) use eye-glasses that 
make up for their weakness. 

Accordingly, we should allow students with a poor solving-systems-of-linear-
equations skill to use a compensation tool when “driving in analytic geometry 
land”. In fact, this is not only an act of humanity, but this is our pedagogical duty! 
Banning technology from the classroom and forcing “mathematically challenged” 
students to do analytic geometry without a much needed compensation tool is like 
banning eye-glasses from the road traffic! 

It goes without saying that we should strive to remove any weakness that we find 
with a student. But we need to distinguish between “therapy” and “routine work”. 

choose equivalence transformation 

simplify 
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Analytic geometry should not be (mis)used as a therapeutic opportunity to repair a 
solving-systems-of-linear-equations weakness! 

☯ 
The following analogy from dancing clarifies the scaffolding concept even 
further. 

Viennese Waltz is pretty simple – at least from a mathematical point of view. One 
has six beats of the music to move forward six steps while doing a 360 degree 
turn. The theory of Viennese Waltz sounds simple; the practice is more challen-
ging when trying to follow the rhythm of a piece of music and even more so when 
trying to do this with a partner in continuous body contact. 

Teaching Viennese Waltz usually starts with asking the students to stand so that 
they look into the direction that they want to (are 
supposed to) dance. Starting with the right foot for-
ward they should do a 180 degree turn with three 
steps on the three beats 1 – 2 – 3 (one step per beat). 
After completion of these three steps they should be 
looking at the position they were coming from.  

We will ask our students to practice this small three 
step routine for a while. After some time, usually, 
there will be two groups of students: Those who can 
turn 180 degree on three steps – and those who 
cannot. “Without loss of generality” (and for simpli-
city) let’s assume that the second group achieves only 
a 90 degree turn. For later reference we will label 
these two groups of students 180-degree-students and 
90-degree-students. 

We assume now that the next exercise would require everybody to do a full 360 
degree turn on the six beats 1 – 2 – 3 – 4 – 5 – 6. If we ask the students to try this, 
then the 180-degree-students may be able to do it, but the 90-degree-students 
would be lost completely. And it is clear, why: in order to succeed in the end, a 
90-degree-student would have to make up for the (known) poor performance in 
the first three steps by doing a 270 degree turn on 4 – 5 – 6. But this is a real 
challenge even for a good dancer! 

How can we do better in teaching the Viennese Waltz turn? We ask the students 
to stand with their backs into the direction that they want to (are supposed to) 
dance. In other words, we ask them to pretend that they just did a perfect 180 
degree turn on 1 – 2 – 3, independent of whether they can or cannot. Then we ask 
them to do, starting with the left foot backward, a 180 degree turn with three steps 
on the three beats 4 – 5 – 6 and let them practice this for a while. 
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The next phase would be to combine 1 – 2 – 3 and 4 – 5 – 6. Then we add music. 
Then we add a dancing partner. 

This is exactly the idea of the scaffolding approach: One pretends that one can do 
all lower level tasks by delegating them to the tool. This allows to fully concen-
trate on the new, higher level task.  

☯ 
Here is a quote from a teacher who made an observation in his classroom after he 
learned about the scaffolding method: 

I had a simple example today of a boy  
who was dropping behind in algebra  

because he was struggling to cope with the mental arithmetic,  
which he saw as a vital skill for the exercise.  

Gently persuading him to use a calculator made quite a difference 
 and he was able to demonstrate  

that he had good competence in the algebraic skills.  
The different levels of use of mathematics are really applicable  

at any time in the classroom. 
(Peter Ashbourne) 
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Solve 
 

Traditional mathematics teaching is very much centred on solving problems – 
ranging from simple calculations such as 5+12 = ? or 3x+4x = ? to complex word 
problems involving optimization. 

Technology for supporting one of the other five archetypes (Represent, Docu-
ment, Communicate, Compensate, Explore) is mostly seen as a supplement or as 
an enrichment of traditional teaching. Technology for solving problems, however, 
by many teachers is seen as a competition for what they do in the classroom or 
even as a threat to the students. 

Computer algebra systems provide a rich collection of black boxes for solving 
problems in algebra, trigonometry, calculus, matrices, and other areas. Popular 
commercial CAS automate up to 80 percent of what we teach until the end of high 
school (with exit exams such as “Abitur”, “Matura”, “Baccalaureate”, or “A 
Level”). This is the reason why the appearance of CAS has shaken mainstream 
mathematics teaching all over the world.  

Computer algebra systems polarize educators into supporters and opponents. 
Many supporters would like to use CAS whenever possible, because this would 
allow for solving more (realistic) problems in the classroom. Many opponents 
would like to ban CAS, because they believe that scientific calculators destroyed 
their students’ mental arithmetic, which is seen as a vital mental skill, and CAS 
could have an even more devastating effect by destroying mental algebra, mental 
trigonometry, mental calculus, etc. 

Both arguments appear plausible – so what shall we do? Which mental faculties 
do we need – and how much of each? 

☯ 
How far can you see? How much can you hear? How loud can you shout? How 
far can you reach? How far can you walk? How much math can you do? We have 
many horizons, each being defined by a faculty that we possess. The faculty of 
hearing defines the audio horizon, the faculty of seeing defines the visual horizon, 
etc. The faculty of performing arithmetic, algebra, trigonometry, calculus, etc. 
defines the horizon of the mathematical problems that we can solve. 

Throughout history people tried to extend their horizons by making intelligent use 
of nature and/or by building amplification tools. A megaphone (most simply 
formed with the two hands around the mouth) increases the reach of the voice. An 
ear trumpet (most simply formed with the hands extending the outer ears) allows 
for better hearing. With a horse we can move faster and greater distances. More 
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recent moving tools are bicycles and cars. With a telescope we can see further 
than our natural eyesight would allow. And so on. Today we even have tools that 
allow us to do something that we cannot do naturally – such as fly. 

Pebbles helped early history people with their arithmetic. Later, a “user interface” 
was added by arranging pebbles into an abacus. Today’s computers are much 
advanced abaci as was already discussed in an earlier chapter. 

The history of mankind is a history of producing tools and technology.  

☯ 
With any kind of technology a key question is when to use it and when not to use 
it. When we have a car available should we use the car whenever we want to go 
from A to B?  

If A and B are a hundred kilometres apart, the answer is “yes”. If A and B are 
only five meters apart, the answer is “no”. What conditions make the “no” turn 
into a “yes”? Is it just a distance? Or is it (also) a purpose – because every desire 
to move from A to B has a purpose. Are any other issues relevant for this 
decision? 

Physical fitness certainly will be an issue here. A physical challenge such as a 
handicap of walking will influence the decision. This is what we already dis-
cussed in the chapter Compensate. 

If A and B are three kilometres apart – should we walk or drive? If the purpose for 
moving from A to B is to do some shopping, then going by car appears reason-
able, in particular because we may not be able to carry all the groceries that far 
back home. If the purpose for moving from A to B is to improve physical fitness, 
then we should jog – not drive. 

This thinking can be applied also to using mathematical tools. As an example, we 
look at the function (or button) solve, which is a “black box” for solving many 
types of equations, systems of equations, inequalities, and systems of inequalities. 
When should we use solve? 

When we ask our students to solve an equation, there are two possible motivations 
for that. Either we want the solution – for example, because the solution is needed 
within a bigger context such as an analytic geometry problem – or we want the 
students to take the steps to the solution so that they develop or improve their 
(mental) algebra skills. This is exactly as it is with physical movement: When we 
move, then either we are interested in reaching the destination or we are interested 
in the moving. The key question in the classroom, therefore, is: 

Are we interested in the solving or in the solution? 
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When we want the solution, then we should use technology so that we obtain the 
solution quickly and can rely on its correctness. This serves the problem solving 
skill in the best possible manner, because we (as well as the students) can fully 
concentrate on the strategy of solving the bigger problem rather than concentrate 
on performing the necessary calculations. 

When we want the solving (process), then we should not use technology (except, 
when necessary, for lower level tasks as was explained in the chapter on Compen-
sation).  

Here is a reverse thought: If we want our students to practice the solving of sys-
tems of linear equations, we should give them systems of equations to solve. We 
should not abuse higher level topics such as analytic geometry for that! 

The following equality provides a useful model: 

(school) mathematics = mental training + problem solving training 

Educators who desire to ban technology are advocates of mental training. Educa-
tors who desire to use technology as much as possible are advocates of problem 
solving training.  

Nothing is either good or bad – only thinking makes it so. 
(William Shakespeare) 

School mathematics has both aspects and we should have or create room for both 
in the classroom.  

☯ 
Mental training has never been as important as it is today. 

Around 1750 the steam engine was invented. With this tool, people could create 
power as and where needed from any flammable substances such as wood or coal. 
Both the ease of generation and the amount of power that could be generated 
made this a true quantum leap. The steam engine led to unimaginable possibili-
ties: the industrial age had begun. Even today we are still amazed at what the 
steam engine and its successors (bulldozer, ocean liner, aeroplane, spaceship, etc.) 
can do. 

Before the industrial age, one had to use one’s body to earn one’s daily bread. 
Today that is no longer the case. However, most people realise that the body 
needs exercise so as not to fall into ruin. This is why so many people in the 
industrialized parts of the world now take part in recreational sports such as 
jogging, aerobics, body-building and skiing in order to keep fit. 

Around 1950 the computer was invented. With this tool, people could create intel-
lectual force (so to speak) as and when needed, at first principally in terms of 
memory and numerical calculation power. This invention caused another new 
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quantum leap. With the computer, in particular with the possibilities of modern 
telecommunications, totally new possibilities arose: the information age had 
begun. 

Up to the information age most people had to use their intellect. In the future 
fewer people will be required to16, and will thus realise that the intellect needs to 
be exercised so as not to fall into ruin. “Thought sports” may well become as 
popular in the twenty-first century as jogging was at the end of the twentieth 
century. That this development is already happening is obvious from the sharply 
increasing sales figures of specialist books and (computer) games as well as from 
the popularity of TV quiz shows. 

☯ 
Mathematics is the principal means of educating the human mind. 

(Carl Friedrich Gauss) 

 

Sometimes one sees in the school simply the instrument for transferring 
a certain maximum quantity of knowledge to the growing generation. 

But that is not right. Knowledge is dead; the school, however, serves the living. 
It should develop in the young individuals those qualities and capabilities 

that are of value for the welfare of the commonwealth. 
But that does not mean that individuality should be destroyed 

and the individual become a mere tool of the community, like a bee or an ant. 
… 

If you have followed attentively my meditations up to this point,  
you will probably wonder about one thing. 

I have spoken fully about in what spirit youth should be instructed. 
But I have said nothing yet about the choice of subjects for instruction, 

nor about the method of teaching. 
Should language predominate or technical education in science? 

To this I answer:  
In my opinion all this is of secondary importance. 

If a young man has trained his muscles and physical endurance  
by gymnastics and walking, he will later be fitted for every physical work. 

This is analogous to the training of the mind  
and the exercising of the mental and manual skill. 

(Albert Einstein – from a speech to educators in 1936) 

☯ 

                                               
16 With cell phones we don’t need to memorize phone numbers. With navigation systems we 
don’t need to use our sense of direction. And so on … 
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Computer algebra systems force us to ask questions that we should have asked 
earlier. We did not – and now we must. The above exposition gives an answer to 
the question “what is the purpose of a classroom task?” 

☯ 
Another question is “what are indispensable manual skills?” What manual calcu-
lation skills are still needed when students use numeric, graphic, or algebraic tech-
nology? What should students be able to do manually, i.e. just using paper and 
pencil? In many countries this question now is discussed under the title “Stan-
dards of Mathematics Education”. 

There is no general answer to this question. Using the car metaphor, this is the 
question as to what distance the students should be able to move without using a 
car. Ultimately, the answer is a matter of definition.17 

☯ 
Assessment is an important pedagogical instrument. Therefore it is logical to ask 
“how to integrate technology into assessment”. Naturally, this question is tightly 
connected with the question about the standards, because whatever we declare an 
indispensable manual skill we need to test as a manual skill, i.e. in a technology-
free environment. 

A practical answer is easily derived from the “mathematics = mental training + 
problem solving training” model. One simply splits the exam in two parts: When 
assessing mental fitness, no tools are allowed. This includes even a simple four-
function calculator. When assessing problem-solving capabilities, all tools are 
allowed – or, better, solicited. This includes graphing and algebraic tools such as 
computer algebra systems. If the split is not manageable within a single exam, one 
should assess the two “disciplines” at different times. 

Here is a parallel with ice skating: Mental training compares with the compulsory 
exercise, in which the athlete demonstrates a mastery of the required basic tech-
niques. Problem solving compares with the voluntary exercise (= freestyle), in 
which the athlete demonstrates the ability to combine the basic techniques into a 
choreographed presentation. The total score depends on the scores of both the 
compulsory and the voluntary exercise. 

From the world of teaching, foreign language teaching may serve as an example, 
because dictionaries are well integrated “tools” for teaching and learning a foreign 
language. 

A good skill in a foreign language comprises two sub-skills: one has to know 
enough words (their syntax and their semantics) and one has to be able to com-
                                               
17 A provoking attempt is in the paper by Herget/Heugl/Kutzler/Lehmann, see References. 
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bine the words into meaningful text. The vocabulary compares to the indispen-
sable manual calculation skills and the writing of text compares to the problem 
solving skill. 

In foreign language teaching these two skills are assessed in two different tests. 
Naturally, dictionaries are not allowed in word tests, while (normally) they are 
allowed when students have to write a composition. 

☯ 
We should make sure that students have similar (if not to say equal) chances. 
There are many different kinds of mathematics technology on the market – with 
prices ranging from “affordable” to “exclusive”. Will students who can afford to 
buy expensive tools have an advantage? Using the car metaphor this question 
translates into “does the Porsche owner have an advantage over someone with an 
inexpensive economy car?” 

For an answer we again look at the example of foreign language teaching, where 
there are many different kinds of dictionaries on the market. 

A good foreign language test is one for which the quality of the dictionary does 
not make (or hardly makes) a difference in the test’s outcome. When writing a 
composition, the emphasis should be on everything that the dictionary cannot help 
with. 

Essentially, a dictionary, no matter if manual or electronic, plays – or should play 
– only a minor role in foreign language assessment. And this is exactly the lesson 
that we should learn for the integration of technology into mathematics teaching 
and learning in the long run. 

We should develop a teaching, learning, and assessment culture in which the 
questions that we ask, the problems that we pose, and the way that we evaluate the 
answers and results do not depend (or hardly depend) on the technology that is 
used in the exam. Technology shows us that the performing of calculations is the 
least important part of mathematics. 

Mathematics is the art of avoiding computations. 
(Bruno Buchberger) 

Computers and calculators should be for mathematics teaching and learning what 
dictionaries are for foreign language teaching and learning. Not more and not less. 

 ☯  
If it is not necessary to use technology, 

then it is necessary to not use technology. 
(Helmut Heugl) 
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Explore 
 

How do we learn walking, speaking, riding a bike, dancing, …? We learn by 
doing. We learn by trial and error. We learn by exploration. We try, we observe, 
we fail, we analyze, we try again, … 

How did mankind discover all the mathematics that we know today and how do 
we find even more mathematics? By the very same method.  

More formally, we can describe the method of mathematical “growth” as follows. 
Applying known algorithms produces examples. From the examples we observe 
properties that are inductively expressed as a conjecture. Proving the conjecture 
yields a theorem, i.e. guaranteed knowledge. The theorem‘s algorithmically 
usable parts are implemented in new algorithms. Then the old and the new algo-
rithms are applied to new data, yielding new examples that lead to new observa-
tions, new conjectures, and so on. 

 

This picture of a spiral that demonstrates the path of discovery of (mathematical) 
knowledge was proposed by Bruno Buchberger. In the spiral we find three phases: 
the phase of exploring, the phase of securing, and the phase of applying. These 
three phases can also be denoted as induction, deduction, and production. 

☯ 
In its beginnings mathematics was a purely experimental science, i.e. it consisted 
only of the phases of exploration and application. Then the Greek applied to it the 
deductive methods of their philosophy (i.e. they added the phase of securing), thus 
establishing mathematics as the deductive science as we know it today. Fairly 
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recently (in terms of history – notably in the first half of the 20th century) a group 
around the French mathematician Jean-Alexandre-Eugène Dieudonné (the group 
became known under the name Bourbaki) restructured the mathematical know-
ledge using the system of “definition-theorem-proof-corollary-example ...”. This 
Bourbaki system, also called Bourbakism, being developed for the purpose of 
inner-mathematical documentation and communication, comprises only the pha-
ses of securing and applying and has become characteristic to modern mathema-
tics. All mathematics research is published in this style. But then Bourbakism gra-
dually lodged itself in teaching and learning. It has become customary to teach 
mathematics by presenting mathematical knowledge, and then asking the students 
to learn it (= secure it) and apply what was learned to solve homework and exam 
problems. 

 

Once we have finished the two phases for a certain topic, then we start over with 
presenting the next topic; and after that the next topic, and so on. But there is no 
spiral any more. There is only a sequence of repeated presenting-learning-apply-
ing phases. 

This is a highly unnatural way to (try to) learn. No mathematician could do 
mathematical research the way we demand our students to do it. Mathematicians 
do go through the full spiral. 

Probably it is the available Bourbaki style mathematical documentation (that 
nowadays also includes mathematics textbooks) that gives the wrong impression 
that mathematics is not an “experimental science” although it definitely is – to 
some extent. A good example is Andrew Wiles’ proof of Fermat’s Last Theorem. 
Andrew Wiles worked for about seven years on this proof, and obviously he spent 
most of the seven years in the phase of exploration. The Bourbaki style summary 
of his work is a 109 page article in the journal Annals of Mathematics that may 
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have taken him several weeks to write – still only a very small portion of the 
seven years … 

A student has to „locally“ build his individual little „house of mathematics“ while 
a scientist does pretty much the same „globally“ by trying to find mathematical 
knowledge that is new for mankind (whereas for the student it is new “only” for 
him or her). For both the scientist and the student a substantial part of knowledge 
acquisition happens during the phase of exploration. From this point of view it 
becomes understandable why so many students are at loggerheads with mathema-
tics, and one will demand that exploration obtains its due position within the 
teaching of mathematics. Phases of exploration should complete the traditional 
teaching methods – not substitute them! This is not a plea for returning to pre-
deductive Egyptian mathematics but a plea for mathematics teaching and learning 
going through all three phases of the knowledge acquisition spiral. 

However, it is understandable that, within the framework of today‘s curricula, 
there was hardly any exploration in the mathematics classrooms. Exploration, 
performed with paper and pencil, is both time consuming and error prone. Within 
the time available at school, students can generate only a very small number of 
hand produced examples for the purpose of observing and discovering, and a 
hefty portion of these examples probably would be faulty due to calculation and 
other errors. There is nothing that you can observe from only a few, partly wrong 
examples!  

 

Look at a typical example from geometry. Say, we want to teach our students that 
in every triangle the three altitudes intersect in one point. We 
might ask them to draw five triangles, and then construct the three 
altitudes in each. But what happens? Most of our students – being 
lousy drafts(wo)men – will find that in three or four of their five 
triangles the three altitudes do NOT intersect in one point. And 
this should convince them that this is a true statement?!  

From now on technology enables students to experiment within almost all topics 
treated in mathematics teaching. Students can use tools such as computer algebra 
systems, dynamic geometry systems, and spreadsheets for doing large numbers of 
examples in a short time and the electronic assistant guarantees the properness of 
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the results. Talking about an assistant: historic records indicate that great mathe-
maticians such as Carl Friedrich Gauss employed herds of human “calculators” 
without which they would not have made most of their famous findings. 

The plea for allowing students to find what they are supposed to learn is not new. 

Help me to do it by myself. 
(Maria Montessori) 

While Montessori pedagogy is successfully used for lower level education it was 
not yet possible to use it for high school mathematics. Latest computer techno-
logy, in particular CAS, allows for that.  

We should not teach students something that they could discover themselves. 
(Hans Freudenthal) 

It took many hundreds of years and very many great minds to discover the mathe-
matics that our students are supposed to learn today. It is presumptuous to believe 
that they can make these discoveries all by themselves – even with technology. 
For sure they won’t stay at school for however long it would take them for that. 

With technology we can implement a new teaching and learning culture that could 
be called guided explorations, in which the teacher observes the students in their 
experiments and feeds them with useful hints along their “explorative journey” in 
order to help them reach the expected goal, i.e. make the intended discoveries.  

☯ 
Give a person a fish and you feed them for a day. 

Teach a person to fish and you feed them for a lifetime. 
(Confuzius) 

By translating this quote of Confuzius into the language of teaching and learning 
mathematics, we get a very good description of what we have and what we should 
try to achieve: 

Give a student some mathematics and you feed them for the next exam. 
Teach a student to fish for mathematics and you feed them for a lifetime. 

(Confuzius, adapted) 

☯ 
Dynamic geometry systems such as Cabri Geometry (also included in TI-Nspire), 
Geometers Sketchpad, Cinderella, GeoGebra, and Autograph are typical tools for 
explorative learning in Euclidean and analytic geometry. 

In the chapter Represent we showed screens of TI-Nspire, in which one can grab a 
graph, and then move the graph and see how the corresponding function 
expression changes. 
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This is a good exercise for experimenting, discovering and understanding how the 
factor of x² influences the shape of the graph.  

Mathematics is the science of patterns. 

Technology helps to generate enough examples for the students to be able to see 
the patterns. 

☯ 
Following is a session with TI-Nspire CAS, in which we create a spreadsheet that 
experimentally reveals patterns of differentiation for discovery.  

� Open a Lists&Spreadsheet page, and then make the second column as wide as 
possible. 

=  

Define the second column to be the derivative of the first column with respect to 
x: 

� After entering the equal sign, paste the derivative template, and then choose 
‘x’ as the variable and column ‘a’ as the expression. 
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� Conclude the input. 

 

You are ready now to make a nice pattern recognition exercise with your students. 
The goal should be not too ambitious, but not too easy either. To start with, let 
them find the rule for the derivative of the n-th power of x by showing them some 
examples: 

� Enter into the first column the expressions 2x , 5x , and 9x . 

 

Ask your students if they see a pattern and let them describe their findings. You 
may want to add another example: 

� Enter 25x  into the first column. 

 

Probably your students will have the correct answer by now. But you should not 
make it that easy for them. Challenge them by entering a negative power of x: 

� Enter 4x−  into the first column. 

 

At first glance this seems to not fit the pattern. Let your students recollect what 

they now about powers. If needed, help them remember 5
5

1
x

x
−= .  

Next, challenge them with a fractional power: 

� Enter 
4

3x
−

 into the first column. 

 

The next challenge could be a fractional power for which TI-Nspire CAS uses a 
special notation: 

� Enter 
1

2x  into the first column. 
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Again, this seems to not fit the pattern. But probably, encouraged by the previous 
examples, your students will look for ways to rewrite the expression appropria-

tely. If needed, help them remember 
1

2x x= . 

Finally challenge them with the “hidden” first power of x: 

� Enter x into the first column. 

 

As simple as this looks, this may be the hardest challenge, aiming at remembering 
both 1x x=  and 01 x= . At the end of this exercise your students have discovered 

the rule 1n nd
x n x

dx
−= ⋅  and they have reinforced some important facts about 

powers. 

☯ 
The above template for derivatives can be used to discover many more different-
tiation rules, including the chain rule.  

� Enter 3(2 5)x +  into the first column. 

 

� Enter 2 3( 1)x +  into the first column. 

 

Let the students discover what the difference is between the expected factor 3 and 
the actual factor. 

☯ 
When students discover a rule by observing a pattern, it is much easier for them to 
remember the rule when they need it, because the path that led to the discovery 
left a trace in the brain. 

☯ 
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More Thoughts about Teaching and Technology 
 

Being a teacher is something very special. It goes far beyond possessing a good 
faculty of something. Someone with a good faculty of reading not necessarily can 
teach a child how to read. Also, not every good sports(wo)man later turns into a 
good coach. Good teaching is a very fine art! 

And it is more than that.  

Sometimes the wealth of a country is measured by the amount of mineral resour-
ces that it possesses such as oil, copper, silver, gold, or diamonds. But all of these 
resources are finite. There is a much more precious resource that all countries 
have: humans. 

Youth is the wealth of a nation. 
(Sheikh Zayed, former ruler of United Arab Emirates) 

Teaching is the art of developing human resources. Therefore, teaching greatly 
contributes to the wealth of a nation. 

Teachers help the country to develop human capital. 
(Star – The People’s Paper, Malaysian newspaper, Monday 17 May 2004) 

In the past the development of mineral resources was achieved by human labour 
using simple tools such as shovel and staple. Efficiency was multiplied by using 
latest technology such as caterpillars and drilling derricks.  

               

In the past the development of human resources (= teaching) was achieved by 
teachers using chalk and blackboard. Also here efficiency can be multiplied by 
using latest technology such as computer algebra systems, dynamic geometry 
systems, and spreadsheets. 
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☯ 
Traditionally we use our intellects when we teach and we address our students’ 
intellects. However, feeling is much more important than thinking. Therefore, 
feelings are a very effective support for teaching and learning. 

Experience shows, that students can get very excited when using computers and 
calculators for making discoveries. Therefore, technology supports the teaching 
through emotions.  

☯ 
Here is one more picture that helps to understand the benefit of using technology 
in the classroom. 

A mathematics teacher is like a tour guide who has to guide a group of hikers, 
comprising top athletes and physically challenged persons, through rough terrain 
such that everybody arrives in good mood and at the same time at the final desti-
nation. 

                   

This is exactly the situation that we face in a typical mathematics classroom with 
both mathematically gifted and “mathematically challenged” students.  

With technology we can master this situation in the best possible manner. For the 
mathematically challenged students technology is a compensation tool (a wheel 
chair, a crutch) with which they can move faster. For the mathematically gifted 
students technology is an exploration tool that “entertains” them or keeps them 
busy with fascinating discoveries while they have to wait for the others to catch 
up. 
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Casanova or Don Juan? 
 

Giacomo Girolamo Casanova was an Italian adventurer and writer who lived 
1752-1798. He had a degree in law, but also had studied mathematics. Don Juan 
is a legend, used as hero in opera, play, and fiction. The first written version was 
published in Spain around 1630. 

Both are famous for being womanizers – though there is a significant difference: 
Casanova wanted pleasure for the women, Don Juan wanted pleasure for himself. 

We can use this difference for a classification of teachers, notably 

• Casanova-type teachers and 

• Don Juan-type teachers. 

There is no teaching without a student. Therefore, the student is (or should be) in 
the centre of all teaching. 

          . 

A Casanova-type teacher meets the student where he or she is and guides him or 
her through the topic of teaching as far as this student can go. The student comes 
first in this endeavour and mathematics comes second. For a Casanova-type 
teacher every (group of) student(s) is a new challenge and the teaching is always 
different.  

For a Don Juan-type teacher mathematics comes first and the student comes 
second (if not to say ‘last’). Typically their teaching is always more or less the 
same, notably a “sink or swim” style. 
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In essence, a Casanova-type teacher teaches students and a Don Juan-type teacher 
teaches mathematics.  

When using technology, the difference between these two types of teachers may 
become even more dramatic: 

 

For a Casanova-type teacher the student still is in the centre, mathematics is 
secondary and serves the development of the student, and technology is tertiary 
and serves the dissemination of mathematics. 

If a Don Juan-type teacher is a fan of technology, then technology may become 
his or her primary interest of teaching, so that they end up teaching technology.  

☯ 
As said before, students are the original goal of all teaching.  

Therefore, we should teach students.  

Therefore, we should be Casanovas.  

After all that you have read in this book you will understand my plea that … 

… we should be CASanovas. 
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