
T3	Europe,	Brussels	–	March	2017	–	Nevil	Hopley	
Simulation	of	χ2	Test	of	Association	in	a	Two-Way	Contingency	Table		

	
The	following	code	simulates	a	test	of	association	for	any	two-way	contingency	table	and	
compares	it	to	the	appropriate	χ2	distribution.	
It	is	made	of	two	parts	–	a	program	[called	chisquared]	which	calls	a	function	[called	simulate]	
There	are	no	restrictions	on	the	size	of	the	contingency	table.	
There	are	no	checks	on	the	magnitudes	of	the	expected	frequencies.	
The	following	pages	show	the	code,	and	then	explain	line-by-line	how	each	part	of	the	code	
works,	with	the	help	of	an	example.	
	
Line

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19

20

	

	

	 	

Line	 Explanation	 Example	
1. 	 Defines	input	of	observed	frequency	matrix	and	

number	of	simulated	trials	

2. 	 Start	of	Program	 	
3. 	 Define	local	variables	so	that	they	don’t	appear	on	the	

variable	list	after	the	program	ends.	
	

4. 	 By	default,	the	sum()	command	returns	a	matrix	of	
column	totals.	This	is	then	converted	to	a	list.	

5. 	 Return	a	list	of	row	totals	by	first	taking	the	transpose	

of	the	observed	frequency	matrix.	
	

6. 	 Define	the	variable	to	hold	the	values	of	the	chisquared	
statistic	for	each	of	the	simulated	trials.	

7. 	 Start	of	loop	for	the	number	of	trials	 	
8. 	 Define	a	matrix	that’s	the	same	dimensions	as	the	

observed	frequency	matrix,	but	contains	all	zeros.	 	
9. 	 sum(coltotals)	returns	the	total	from	whole	matrix	and	

this	controls	the	number	of	times	that	simulate	is	called	

10. 	 The	simulate	function	returns	a	matrix	where	all	
elements	are	zero	and	one	element	is	1.	This	is	then	
added	to	the	tally	

In effect, this line becomes….

	
11. 	 End	when	the	tally	matrix	has	the	same	total	as	the	

observed	frequency	matrix.	
For example, after 84 simulations….

12. 	 Conduct	a	chi-squared	test	on	the	tally	matrix.	

The	chi-squared	statistic	value	is	stored	in	the	stat	
variable	stat.χ2	

13. 	 Store	the	resulting	chi-squared	statistic	for	the	

simulated	tally	matrix	

14. 	 End	after	the	specified	number	of	trials,	so	that	
chisquaredvalues	is	then	a	long	list	of	simulated	values.	

15. 	 Conduct	a	chi-squared	test	on	the	original	observed	

frequency	matrix, fo	

16. 	 Count	how	many	of	the	simulated	chi-squared	statistic	

values	are	greater	than	the	statistic	for	the	original	
observed	frequency	matrix	

17. 	 Display	the	chi-squared	statistic	for	the	observed	
frequency	matrix	

	

18. 	 Display	the	theoretical	p-value	 	
19. 	 Display	the	simulated	result	as	a	decimal,	by	“k	×	1.”	 	
20. 	 End	of	program	 	
	 	

Line

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16

17
	
	

	 	
	

	 	

Line	 Explanation	 Example	
1. 	 Defines	inputs	which	are	the	lists:	row-totals	and	

column-totals.	The	size	of	the	matrix	is	therefore	given	
by	the	dimensions	of	these	lists.	

2. 	 Start	of	function	 	
3. 	 Define	local	variables	so	that	they	don’t	appear	on	the	

variable	list	after	the	function	ends.	
	

4. 	 Define	the	column	intervals	into	which	simulated	
values	will	go.	
In	this	example,	0<value≤47	or	47<value≤84	

5. 	 And	similarly	for	the	rows.	

In	this	example,	0<value≤46	or	46<value≤84	
6. 	 Define	a	random	number	between	0	and	84	that	will	

then	fall	into	either	the	first	column	or	the	second	
column.	
Here,	as	0<12.3218≤47,	it	will	go	into	column	1.	

7. 	 Define	a	random	number	between	0	and	84	that	will	
then	fall	into	either	the	first	row	or	the	second	row.	
Here,	as	46<61.6402≤84,	it	will	go	into	row	2.	

8. 	 Set	col	variable	for	which	column	to	put	the	value	in.	 	
9. 	 Continue	the	loop	when	the	value	is	greater	than	the	

next	cutoff.	
Therefore,	we	exit	the	loop	when	it’s	not	greater.	

Compare	12.3218	to	each	of	47	and	
84	

10. 	 Increment	column	number	by	one	
11. 	 End	loop	 	
12. 	 Set	row	variable	for	which	row	to	put	the	value	in	

13. 	 Continue	the	loop	when	the	value	is	greater	than	the	
next	cutoff.	
Therefore,	we	exit	the	loop	when	it’s	not	greater.	

Compare	61.6402	to	each	of	46	and	
84

14. 	 Increment	row	number	by	one	
15. 	 End	loop	

16. 	 Create	a	matrix	with	a	1	in	the	correct	row	and	column,	
and	0’s	elsewhere.	
In	this	example	the	‘1’	is	in	row	2	and	col	1.	

17. 	 End	of	function	
	
This	function	ensures	that	over	sufficient	repetitions,	the	correct	proportions	of	1’s	and	0’s	
turn	up	in	the	matrix’s	elements,	according	to	the	row	and	column	totals	provided	to	it.	
	
	
	
Authored	by	Nevil	Hopley	
February	2017	
www.CalculatorSoftware.co.uk	

